Metal matrix composites machining by Wire electro discharge machining in last decade: A Review

Nehal I. Joshi¹, Dr. K. B. Judal², Ashish M Desai³,

Ph.D. Scholar, Rai University, Ahmedabad, Gujarat, India¹ Principal, Government Engineering College, Palanpur, Gujarat, India² Lecturer, Department of Mechanical Engineering, Government Polytechnic, Himmatnagar, Gujarat, India³ Email: nijoshi84@gmail.com¹, judalkb@yahoo.com², desaiashish1@gmail.com³

Abstract- Wire electrical discharge machining (WEDM) has evolved from a simple means of making tools and dies to the best alternative to nascent materials like Metal Matrix Composites, ceramic composites, which have immense applications in automobile, aircraft, railway sectors, defense, aerospace, micro systems industries, agriculture farm machinery, etc. WEDM shows higher ability for cutting complex shapes with high precision for MMCs. Conventional machining of MMC's causes serious tool wear due to greater hardness and the existence of abrasive reinforcement particles. Numerous studies and research are going on in modelling of WEDM since its inception. Most of the researchers thoroughly worked on process modelling, process parameters, materials of electrodes/tool-work-piece, dielectric medium, etc. The process modelling of WEDM is considered as primary objective. There is need to categorize the variety of research for better understanding of research done in this area. This paper reviews machining of MMCs, techniques used, responses, findings and summery of review. The paper also discusses the potential future trends of research work in the same area.

Index Terms- WEDM, MMC, AMC, MRR, Surface Roughness, Kerf width.

1. INTRODUCTION

Metal Matrix Composites have proven to be significant highly developed materials that proved as alternatives to many conventional materials, mostly when light-weight and high strength components are needed such as in the automotive, aerospace, defense and other industries. A metal matrix composite (MMC) is composite material with two or more fundamental parts, one being a metal and other material may be a different metal, ceramic or organic compound. The matrix is the main material into which the reinforcement is implanted, and is completely continuous. The matrix is usually a metal such as aluminum, titanium or magnesium, and provides a compliant support for the reinforcement. The reinforcement can be either continuous, or discontinuous. Table 1 shows different types of MMCs, reinforcements, properties and applications of the same. MMCs have found numerous fruitful industrial applications in recent past as hightechnology materials due to their excellent properties such as high strength-to-weight ratio, high toughness, lower value of coefficient of thermal expansion and capability of functioning at high temperatures. Table 1 shows different kinds of MMCs, reinforcements, properties and applications of the same [1].

WEDM is a spark erosion process used to fabricate intricate two and three dimensional shapes through electrically conductive work pieces. WEDM has become a significant non-traditional machining process, widely used in the aerospace, nuclear and automotive industries. As WEDM process provides an effective solution for machining hard materials (like titanium, ceramics, zirconium and tungsten carbide) like Metal Matrix Composites, ceramic composites, with intricate shapes and profiles which have vast applications in automobile, aircraft, railway sectors, defense, aerospace, micro systems industries, agriculture farm machinery with intricate shapes and profiles[2]. Conventional machining of MMC's causes serious tool wear due to greater hardness and the existence of abrasive reinforcement particles. So there is need to focus on categorization of the variety of research for better understanding of work done in this area.

2. LITERATURE REVIEW

MMC's can be machined by many conventional machining processes but results shows huge amount of tool wear, low accuracy, poor machineability, poor surface quality, more cutting force required which restricts MMC's to be machined by conventional manufacturing processes, most of authors recommended non conventional machining processes for machining of MMC's [2,3,4,5,7,8,34,35,3744]. Table 2 is list of literature review since 2008 to recent ones. Table shows work carried out by authors on different types of MMCs, techniques used, their responses and major findings, which leads to future research scenario.

Sr.	Type of	Reinforcements	Properties	Applications
No	MMC		_	
1	Aluminum	Alumina $(Al_2O_3);$	High stiffness (modulus of	Brake rotors for high
	Matrix			speed trains, bicycles, golf clubs,
	Composites			electronic substrates, cores for high
		Carbide (B_4C)		voltage electrical cables, automotive
			conductivity; Excellent	parts (brake components, pistons, and
				pushrods), and Nuclear plant parts.
2	Magnesium	Silicon carbide (SiC)	High stiffness (modulus of	Lightweight automotive brake system,
	Matrix	particles	elasticity); High wear	Components for racing cars, aircraft
	Composite			parts for: transmissions, gearboxes,
			creep resistance; Good	engine and compressors
			strength even at elevated	
			temperatures.	
3	Titanium	Continuous		Turbine engine components (fan
	Matrix	monofilament		blades, synchronization rings,
	Composite		(modulus of elasticity); High	
			•	components of the jet's landing gear,
		(TiB2) and titanium		drive train parts, automotive engine
		carbide (TiC)		components, general machine
		particles		components.
	Copper		High stiffness (modulus of	
	Matrix			conducting springs and other electrical
	Composites			and electronic components,
				Manufacturing hybrid modules.
		carbide particles	electrical conductivity; Good	
			wear resistance.	

Table 1.	Types of MMCs,	reinforcement,	properties and	applications of MMCs

Table 2.	List of Literature Review

Sr. No	Author	MMC Material	Techniques used	Responses	Findings
1	K. Ravi	Al (6082)/	Desirability-Based	MRR, Surface	The influence of process
	Kumar et. al.	tungsten	Multi-objective	roughness	parameters on MRR and SR of
	(2018)[10]	carbide	Optimization	prediction	aluminum
		composite			
2	Harmesh	Al/SiCp-MMC	Box–Behnken's	Cutting speed,	Developed The quadratic
	Kumar et. al.		design	Surface roughness,	regression models
	(2018)[11]			Spark gap	
3	Muniappan	Particulate	Taguchi's technique	Surface roughness,	Regression models were
	et. al. (2018)	Al6061/Sic/Gr		S/N ratio	developed
	[12]				
4	Srivastava	A359/B ₄ C/		MRR,HAZ	Surface integrity in wire-EDM
	et. al. (2018)	Al_2O_3			tangential turning
	[13]				
5	Shamim	Aluminium	Taguchi Techniques	Material Removal	Conducted Parametric
	Haidar et. al.	MMC foam		Rate	optimization
	(2018)[14]				
6	Harmesh	(Al/SiCp-	RSM based Box–	Surface roughness	Various surface defects and their
	Kumar et. al.	MMC)	Behnken design	prediction	possible reasons
	(2017)[15]				
7	Prashantha	Al6061	DOE as per L9		MRR decrease with increase in %
	· · · ·	reinforced with	orthogonal layout	Rate	vol of Silicon carbide particles
	[51]	SiC			

_					
	Mohinder	ZrSiO4p/6063	Box–Behnken Design	Dimensional	Dimensional Deviation (DD)
	Garga et. al.	Aluminium		deviation	increases with increase in pulse
	(2017) [16]	MMC			on time and peak current
9	P. M. Gopal	Magnesium/bor	Taguchi Techniques	MRR, Surface	Ton and wt. % of reinforcement
	et. al. (2017)	on nitride/	L27 orthogonal array	roughness	were most significant for Ra and
	[17]	CRT(Mg/BN/C		-	MRR than any other considered
		RT) hybrid			parameters
		MMC			1
10	Yash et. al.	composites of	Finite element and	Material Removal	Hybrid machining can
	(2017) [52]	ZrO_2 , Al_2O_3 ,	numerical simulation	Rate and Surface	incorporate.
		Si_3N_4 , SiC	models	Finish	ine or portate.
11	Gurupavan	Al6061-6% wt.	Taguchi's L27	SR, accuracy,	Neural network trained with 70%
	et. al. (2017)		orthogonal array &	volumetric MMR	of the data in training set gives
	[91]	material	Artificial Neural	and electrode wear	good prediction results
	[71]	material	Network (ANN).	and electrode wear	good prediction results
10	Vanahaalaat at	Al 6061 based		C	The course an ality of the
			Taguchi L18 array	Surface roughness	The surface quality of the
	al. (2017)	MMCs	and analyzed by		machined part was decreased with
	[94]	reinforced with	ANOVA		increasing peak current.
		four different			
		weight fraction			
		of B ₄ C			
13	Pujara et. al.	LM6	TLBO (Teaching-	Dimensional	TLBO gives better results at a
	(2017) [95]	Aluminum	Learning Based	accuracy	lower number of iterations
		MMC	Optimization)		
			technique		
14	Shubhajit	Al6061/7%SiC/	L18 orthogonal array	MRR and CLA	Voltage and pulse-off time are the
	Das et. al.	3%B ₄ C Hybrid	and analyzed by	value surface	most significant parameters for
	(2016)[21]	MMCs	ANOVA	roughness (Ra)	MRR and Ra.
15	Nilesh G.	A359/SiCp	Experimentation	Cutting rate,	Coated electrode improve cutting
	Patil et. al.	composite	Experimentation	surface finish and	rate, surface roughness while the
	(2016) [20]	composite		kerf width.	kerf width was reduced
16	C. Ahilan	AA7075/TiB ₂	L9 orthogonal array	MRR and surface	Toff influences more followed by
10	(2016) [22]	(3wt %)	design and ANOVA	roughness	Wire feed and Ton.
17	Pramanik et.	Al-based SiC	Experimentation	Degradation of	Proposed two mechanisms for
	al. (2016)	reinforced	Experimentation	wire electrode	
	[53]	MMC		whe electrode	wire degradation.
10			Mathania (1	Casala and	Duene and Maximum and
	Garg et. al.	Al/ZrO2(p)	Mathematical model	Spark gap and	Proposed Maximum and
	(2016) [85]		with RSM	MRR	minimum values of MRR and
					spark gap for effective machining.
	•	Al matrix	L9 orthogonal array	Material removal	Higher MRR can be achieved by
	et. al. (2016)	reinforced with	based Modified	rate	increasing current. Presence of
	[54]	SiC particle	fractional factorial		SiC particles affects surface
		composite	design		roughness.
20	Thella Babu	Al7075/SiCp	integrated approach of	WEDM	Derived the optimal process
	Rao (2016)		PCA weighted GRA	performance	conditions to increase the quality
	[23]		based TM	-	and productivity of WEDM
21	Jamuna et.	A15052 SiC, A1	Hybrid Approach as	Kerf width, tool	BM and RM are influential
	al. (2016)	$6082 \text{ Al}_2\text{O}_3\text{,Al}$	greyfuzzy approach	wear, process cost	parameters for multi response WP
	[93]	7075 Fly ash.	ojrazzj approaen	and SR	and T_{OFF}
22	Dey et.	AA6061/	Box Behnken along	Cutting Speed	The CS increases with an increase
	al.(2016)	cenosphere	with ANOVA and a	Cutting Speed	in pulse on time and decreases
		AMCs.			
	[96]	ANCS.	second order quadratic		drastically with the increase of \mathbf{W}_{t}
			mathematical model		Wt.%.
	Anand	ZrSiO4p/Al	Box-Behnken design	Cutting rate,	Lower SR is obtained at highest
	Sharma et.	6063 MMC		surface roughness	levels of T_{ON} and IP and at lower
	al.(2016)				levels of T _{OFF} and spark gap set
	[25]				voltage.
L			i		

et. al. (2015) [26]reinforced with 10 vol% SiC particles,surface finish and electrode wire weartension were signi for the surface rou wear25Ali Riza Motorcu et. al.(2015) [27]Al/B4C/Gr reinforced hybridTaguchi method and response surface methodologyMaterial removal rate (MRR), surface roughnessDetermined the re MRR, Ra and mac parameters.26Sivaprakasa m et. al. (2015) [63]A413- B4C /9% B413- B4C /9%Response surface methodology and ANOVAMaterial removal rateVoltage, capacitar have significant ef MRR, KW and SF arate27Kandpal et. al. (2015) [45]Aluminium based MMC materialsHybrid machining processThe WEDM proce combination with grinding, abrasive and electro chemic are advantageous machining process28Ergu"n Ekici et. al. (2015) [28]Al/B4C et. al. (2015) (2015)Taguchi L18 orthogonal array with ANOVASurface roughness, Material removal rateMost effective par significant factors Removal Rate.29Mehdi et. al. (2015) [58]Al-Mg_2Si with ANOVAExperimentation with are advantageous orthogonal array with ANOVAMMR with an increase o ari and emulsified oil30Liu et. al. (2015) [75]Al alloy 6061 with Particulate of 10 vol% Al_2O_3Experimentation with Al_2O_3 and 20 vol% Al_2O_3Surface quality characteristicsMRR increased with an increase o ari and emulsified oil31Lal et. al. (2015) [79]Hybrid MMC 7.5% Al_2O_3	Indiana between chining and feed rate ffect on a series with surface jet machining of hybrid series for were pulse-on a wire speed. In the for Material for Material for machining of machining and the series for the speed.
25Ali Riza Motorcu et. al.(2015) [27]Al/B4C/Gr reinforced hybridTaguchi method and response surface methodologyMaterial removal rate (MRR), surface roughnessDetermined the re MRR, Ra and mac parameters.26Sivaprakasa (2015) [63]A413- B4C /9% Response surface methodology and ANOVAResponse surface methodology and rateMaterial removal rateVoltage, capacitar have significant ef MRR, KW and SF materials27Kandpal et. al. (2015) [45]Aluminium based MMC materials raguchi L18 orthogonal arrayHybrid machining processThe WEDM proce combination with grinding, abrasive and electro chemic are advantageous and machining process28Ergu"n Ekici et. al. (2015) [28]Al/B4C compositesTaguchi L18 orthogonal arraySurface roughness, Material removal rateMost effective par surface roughness machining process29Mehdi et. al. (2015) [58]Al-Mg2Si with ANOVAExperimentation with L27 orthogonal array with ANOVAMMR MMRVoltage and curre significant factors Removal Rate.30Liu et. al. (2015) [75]Al alloy 6061 with Particulate of 10 vol% Al_Q3Experimentation with Al_Q3Comparison of machining oilMRR increased with an increase oil with an increase oil oil31Lal et. al. (2015) [79]Hybrid MMC 7.5% Al_Q3 and D203 and D203Experimentation with Taguchi-based greySurface quality characteristicsDecided the optin for multiple paran	lations between chining nee and feed rate ffect on R. esses with surface jet machining, cal machining of hybrid s. rameters for were pulse-on t wire speed. nt are for Material f current in both oil medium. A
Motorcu et. al.(2015) [27]reinforced hybridresponse surface methodologyrate (MRR) , surface roughnessMRR, Ra and mac parameters.26Sivaprakasa m et. al. (2015) [63]A413- B ₄ C /9% A413- B ₄ C /9%Response surface methodology and ANOVAMaterial removal rateVoltage, capacitar have significant ef MRR, KW and SF27Kandpal et. al. (2015) [45]Aluminium based MMC materials Fraguchi L18Hybrid machining processThe WEDM proce combination with grinding, abrasive and electro chemia are advantageous of machining process28Ergu"n Ekici et. al. (2015) [28]Al-Mg_2Si (2015)Taguchi L18 orthogonal arraySurface roughness, Material removal rateMost effective par significant factors Removal array29Mehdi et. al. (2015) [58]Al alloy 6061 with Particulate of 10 vol% Al_2O_3Experimentation with Al_2O_3MRR surface quality characteristicsMRR increased with an increase o air and emulsified oilMRR increased with an increase o air and emulsified oilMRR increased with an increase o air and emulsified oil31Lal et. al. (2015) [79]Hybrid MMC 	chining nce and feed rate ffect on R. esses with surface jet machining, cal machining of hybrid s. rameters for were pulse-on R wire speed. nt are for Material f current in both oil medium. A
al.(2015) [27]hybridmethodologysurface roughnessparameters.26Sivaprakasa m et. al. (2015) [63]A413- B_4C /9%Response surface methodology and ANOVAMaterial removal rateVoltage, capacitar have significant ef MRR, KW and SF27Kandpal et. al. (2015) [45]Aluminium based MMC materialsHybrid machining processThe WEDM proce combination with grinding, abrasive and electro chemic are advantageous of machining process28Ergu n Ekici et. al. (2015) [28]Al/B_4C compositesTaguchi L18 orthogonal arraySurface roughness, Material removal rateMost effective par surface roughness time and for MRR Woltage and currer significant factors Removal Rate.29Mehdi et. al. (2015) [58]Al-Mg_2Si with ANOVAExperimentation with Al_2O_3 and 20 vol% Al_2O_3MMR Experimentation with air and emulsified oilMMR increased with an increase o air and emulsified oil31Lal et. al. (2015) [79]Hybrid MMC 7.5% Al_2O_3 andExperimentation with Taguchi-based greySurface quality characteristicsDecided the optim for multiple param	nce and feed rate ffect on R. esses with surface jet machining, cal machining of hybrid s. cameters for were pulse-on R wire speed. nt are for Material f current in both oil medium. A
[27]Image: Constraint of the second seco	ffect on X. esses with surface jet machining, cal machining of hybrid s. rameters for were pulse-on t wire speed. Int are for Material f current in both oil medium. A
26 Sivaprakasa m et. al. (2015) [63] A413- B ₄ C /9% Response surface methodology and ANOVA Material removal rate Voltage, capacitar have significant ef MRR, KW and SF 27 Kandpal et. al. (2015) Aluminium based MMC materials materials Hybrid machining process The WEDM proce combination with grinding, abrasive and electro chemid are advantageous - machining process 28 Ergu"n Ekici et. al. (2015) Al/B ₄ C composites Taguchi L18 orthogonal array [28] Surface roughness, Material removal rate Most effective par surface roughness, time and for MRR 29 Mehdi et. al. (2015) Al-Mg ₂ Si Experimentation with L27 orthogonal array with ANOVA MMR Voltage and currer significant factors Removal Rate. 30 Liu et. al. (2015) [75] Al alloy 6061 with Particulate of 10 vol% Al ₂ O ₃ and 20 vol% Al ₂ O ₃ Experimentation with air and emulsified oil MRR increased with an increase o air and emulsified higher percentage phase decreases M 31 Lal et. al. (2015) [79] Hybrid MMC 7.5% Al ₂ O ₃ and Taguchi-based grey Surface quality characteristics Decided the optim for multiple paran	ffect on X. esses with surface jet machining, cal machining of hybrid s. rameters for were pulse-on t wire speed. Int are for Material f current in both oil medium. A
(2015) [63]ANOVAMRR, KW and SF27Kandpal et. al. (2015) [45]Aluminium based MMC materials based MMC materialsHybrid machining processThe WEDM proce combination with grinding, abrasive and electro chemia are advantageous machining process28Ergu"n Ekici et. al. (2015) [28]Al/B4C compositesTaguchi L18 orthogonal arraySurface roughness, Material removal rateMost effective par surface roughness, material removal rate29Mehdi et. al. (2015) [58]Al-Mg_2Si with ANOVAExperimentation with L27 orthogonal array with ANOVAMMRVoltage and curre significant factors Removal Rate.30Liu et. al. (2015) [75]Al alloy 6061 with Particulate of 10 vol% Al_2O_3Experimentation machining characteristics in air and emulsified oilMRR increased with an increase o air and emulsified oil31Lal et. al. (2015) [79]Hybrid MMC 7.5% Al_2O_3 and Taguchi-based greyExperimentation with Taguchi-based greySurface quality characteristicsDecided the optim for multiple paran	R. esses with surface jet machining, cal machining of hybrid s. "ameters for were pulse-on wire speed. nt are for Material f current in both oil medium. A
27Kandpal et. al. (2015) [45]Aluminium based MMC materials materialsHybrid machining processThe WEDM proce combination with grinding, abrasive and electro chemic are advantageous of machining process28Ergu"n Ekici et. al. (2015) [28]Al/B4C compositesTaguchi L18 orthogonal arraySurface roughness, Material removal rateMost effective par surface roughness, machining process29Mehdi et. al. (2015) [58]Al-Mg_2Si with ANOVAExperimentation with L27 orthogonal array with ANOVAMMR comparison of machining characteristics in air and emulsified oilMRR increased with an increase of air and emulsified oil30Liu et. al. (2015) [75]Al alloy 6061 with Particulate of 10 vol% Al_2O_3Experimentation with Experimentation with air and emulsified oilMRR increased with an increase of air and emulsified oil31Lal et. al. (2015) [79]Hybrid MMC 7.5% Al_2O_3 and Taguchi-based greySurface quality characteristicsDecided the optim for multiple paran	esses with surface jet machining, cal machining of hybrid s. rameters for were pulse-on twire speed. nt are for Material
al. (2015) [45]based MMC materialsprocesscombination with grinding, abrasive and electro chemic are advantageous of machining process28Ergu"n Ekici et. al. (2015) [28]Al/B4C compositesTaguchi L18 orthogonal arraySurface roughness, Material removal rateMost effective par surface roughness, ime and for MRR29Mehdi et. al. (2015) [58]Al-Mg_2SiExperimentation with L27 orthogonal array with ANOVAMMRVoltage and currer significant factors Removal Rate.30Liu et. al. (2015) [75]Al alloy 6061 with Particulate of 10 vol% Al_2O_3 and 20 vol% Al_2O_3Experimentation with air and emulsified oilMRR increased with an increase o air and emulsified oil31Lal et. al. 	surface jet machining, cal machining of hybrid s. rameters for were pulse-on wire speed. nt are for Material f current in both oil medium. A
[45]materialsgrinding, abrasive and electro chemia are advantageous of machining process28Ergu"n EkiciAl/B4C compositesTaguchi L18 orthogonal arraySurface roughness, Material removal rateMost effective par surface roughness, time and for MRR29Mehdi et. al. (2015) [58]Al-Mg_2SiExperimentation with L27 orthogonal array with ANOVAMMRVoltage and current significant factors Removal Rate.30Liu et. al. (2015) [75]Al alloy 6061 with Particulate of 10 vol% Al_2O_3Experimentation experimentation with alr and emulsified oilComparison of machining characteristics in air and emulsified oilMRR increased with an increase o air and emulsified higher percentage phase decreases M31Lal et. al. (2015) [79]Hybrid MMC 7.5% Al_2O_3 and Taguchi-based greyExperimentation with 	jet machining, cal machining of hybrid s. cameters for were pulse-on wire speed. nt are for Material f current in both oil medium. A
28Ergu"n Ekici et. al. (2015) [28]Al/B4C compositesTaguchi L18 orthogonal arraySurface roughness, Material removal rateMost effective par surface roughness, time and for MRR29Mehdi et. al. (2015) [58]Al-Mg_2Si with ANOVAExperimentation with L27 orthogonal array with ANOVAMMRVoltage and current significant factors Removal Rate.30Liu et. al. (2015) [75]Al alloy 6061 with Particulate of 10 vol% Al_2O_3 and 20 vol% Al_2O_3Experimentation with Experimentation with air and emulsified oilComparison of machining characteristics in air and emulsified oilMRR increased with an increase o air and emulsified oil31Lal et. al. 	cal machining of hybrid s. ameters for were pulse-on wire speed. nt are for Material f current in both oil medium. A
28Ergu"n Ekici et. al. (2015) [28]Al/B4C compositesTaguchi L18 orthogonal arraySurface roughness, Material removal rateMost effective par surface roughness time and for MRR29Mehdi et. al. (2015) [58]Al-Mg_2Si with ANOVAExperimentation with L27 orthogonal array with ANOVAMMRVoltage and current significant factors Removal Rate.30Liu et. al. (2015) [75]Al alloy 6061 with Particulate of 10 vol% Al_2O_3 and 20 vol% Al_2O_3Experimentation with Experimentation with air and emulsified oilComparison of machining characteristics in air and emulsified oilMRR increased 	of hybrid s. crameters for were pulse-on wire speed. nt are for Material f current in both oil medium. A
28Ergu"n Ekici et. al. (2015) [28]Al/B4C compositesTaguchi L18 orthogonal arraySurface roughness, Material removal rateMost effective par surface roughness time and for MRR29Mehdi et. al. (2015) [58]Al-Mg_2SiExperimentation with L27 orthogonal array with ANOVAMMRVoltage and curre significant factors Removal Rate.30Liu et. al. (2015) [75]Al alloy 6061 with Particulate of 10 vol% Al_2O_3ExperimentationComparison of machining characteristics in air and emulsified oilMRR increased with an increase o air and emulsified 	s. cameters for were pulse-on wire speed. nt are for Material f current in both oil medium. A
28 Ergu"n Ekici et. al. (2015) Al/B ₄ C composites Taguchi L18 orthogonal array Surface roughness, Material removal rate Most effective par surface roughness, time and for MRR 29 Mehdi et. al. (2015) Al-Mg ₂ Si Experimentation with L27 orthogonal array with ANOVA MMR Voltage and current significant factors Removal Rate. 30 Liu et. al. (2015) [75] Al alloy 6061 with Particulate of 10 vol% Al ₂ O ₃ and 20 vol% Al ₂ O ₃ Experimentation with Al ₂ O ₃ and 20 vol% Al ₂ O ₃ Comparison of machining oil MRR increased with an increase o air and emulsified oil 31 Lal et. al. (2015) [79] Hybrid MMC 7.5% Al ₂ O ₃ and Experimentation with Taguchi-based grey Surface quality characteristics Decided the optim for multiple param	ameters for were pulse-on wire speed. nt are for Material f current in both oil medium. A
et. al. (2015) [28]compositesorthogonal arrayMaterial removal ratesurface roughness time and for MRR29Mehdi et. al. (2015) [58]Al-Mg_2SiExperimentation with L27 orthogonal array with ANOVAMMRVoltage and current significant factors Removal Rate.30Liu et. al. (2015) [75]Al alloy 6061 with Particulate of 10 vol% Al_2O_3 and 20 vol% Al_2O_3ExperimentationComparison of machining characteristics in air and emulsified oilMRR increased with an increase of air and emulsified oil31Lal et. al. (2015) [79]Hybrid MMC 7.5% Al_2O_3 andExperimentation with Taguchi-based greySurface quality characteristicsDecided the optim for multiple param	a wire speed. nt are for Material f current in both oil medium. A
29 Mehdi et. al. (2015) Al-Mg ₂ Si Experimentation with L27 orthogonal array with ANOVA MMR Voltage and current significant factors Removal Rate. 30 Liu et. al. (2015) [75] Al alloy 6061 with Particulate of 10 vol% Al ₂ O ₃ and 20 vol% Al ₂ O ₃ Experimentation Comparison of machining oil MRR increased with an increase of air and emulsified oil 31 Lal et. al. (2015) [79] Hybrid MMC 7.5% Al ₂ O ₃ and Passed area Experimentation with Taguchi-based grey Surface quality characteristics Decided the optim for multiple param	nt are for Material f current in both oil medium. A
al. (2015) [58]L27 orthogonal array with ANOVAsignificant factors Removal Rate.30Liu et. al. (2015) [75]Al alloy 6061 with Particulate of 10 vol% Al ₂ O ₃ and 20 vol% Al ₂ O ₃ ExperimentationComparison of machining characteristics in air and emulsified oilMRR increased with an increase o air and emulsified higher percentage phase decreases M31Lal et. al. (2015) [79]Hybrid MMC 7.5% Al ₂ O ₃ and Taguchi-based greyExperimentation with Taguchi-based greySurface quality characteristicsDecided the optim for multiple param	for Material f current in both oil medium. A
[58]with ANOVARemoval Rate.30Liu et. al. (2015) [75]Al alloy 6061 with Particulate of 10 vol% Al2O3 and 20 vol% Al2O3ExperimentationComparison of machining characteristics in air and emulsified oilMRR increased with an increase o air and emulsified higher percentage phase decreases M31Lal et. al. (2015) [79]Hybrid MMC 7.5% Al2O3 and Taguchi-based greyExperimentation with Taguchi-based greySurface quality characteristicsDecided the optim for multiple param	f current in both oil medium. A
30Liu et. al. (2015) [75]Al alloy 6061 with Particulate of 10 vol% Al2O3 and 20 vol% Al2O3ExperimentationComparison of machining characteristics in air and emulsified oilMRR increased with an increase o air and emulsified higher percentage phase decreases M31Lal et. al. (2015) [79]Hybrid MMC 7.5% Al2O3 and Taguchi-based greyExperimentation with Taguchi-based greySurface quality characteristicsDecided the optim 	oil medium. A
(2015) [75]with Particulate of 10 vol% Al2O3 and 20 vol% Al2O3machining characteristics in air and emulsified oilwith an increase o air and emulsified higher percentage phase decreases M31Lal et. al.Hybrid MMC 7.5% Al2O3 and Taguchi-based greyExperimentation with Taguchi-based greySurface quality characteristicsDecided the optime for multiple param	oil medium. A
of 10 vol% Al2O3 and 20 vol% Al2O3of 10 vol% Al2O3characteristics in air and emulsified oilair and emulsified higher percentage phase decreases M31Lal et. al. (2015) [79]Hybrid MMC 7.5% Al2O3 and Taguchi-based greyExperimentation with Taguchi-based greySurface quality characteristicsDecided the optim for multiple param	oil medium. A
vol% Al2O3oilphase decreases M31Lal et. al.Hybrid MMCExperimentation with Taguchi-based greySurface quality characteristicsDecided the optime for multiple parameters	of the ceramic
31Lal et. al.Hybrid MMCExperimentation with Taguchi-based greySurface quality characteristicsDecided the optime for multiple parameters	
(2015) [79] 7.5% Al ₂ O ₃ and Taguchi-based grey characteristics for multiple param	IRR.
	neters
7.5% SiCrelational analysisoptimization.32 Kumar et. al. Boron CarbideExperimentationCrater formationImproved mechan	:1
32Kumar et. al.Boron CarbideExperimentationCrater formationImproved mechan(2015) [87](B ₄ C) MMCincrease in kerf with	
roughness due to i	,
B4C particles.	
33 Pragya $SiC_P/6061$ Al box-behnken design surface roughness Voltage is the most	
shandilya et. MMC parameters affecti	ng on surface
al. roughness. (2014)[29]	
34 Zhenlong et. SiC/Al Experimentation by Characteristics of The thickness of response of the thickness of response of the thickness of the thick	ecast laver
al. (2014) particulate micro-WEDM recast layer and increased with the	
[77] MMC removal process of energy increasing.	
ceramic particles	
35 Thella Babu ZC63/SiC _P Taguchi method Surface roughness, Concluded that im	
Rao et. al. MRR, Principal factors on the mul	
(2014)[36] component characteristics was analysis, and kerf order of %vol of S	-
particulate size, p	
pulse-off time, with	
36 S K. Garg et. Al/10 % Central composite Surface roughness. Developed mather	
al. ZrO ₂ (p) design, multi-	
(2014)[38] objective optimization performance chara	acteristics well
37 Sharma et. 6063/ZrSiO ₄ (p) A Box-Behnken material removal Increasing the pulse	so off time and
al. (2014) (5%) MMC design approach of rate (MRR) servo voltage decr	
[89] [89] [89] [89] [89] [89] [89] [89]	
methodology (RSM) on time and peak of	

			and ANOVA		cutting rate increases.
38	Sivaprakasa m et. al. (2013) [67]	Aluminum Matrix Composite (A413-9% B ₄ C).	Modeling by RSM, ANOVA and experimentation	MRR, KW, and SR.	Compared RSM models with ANN models. Concluded ANN model is more accurate than RSM
39	Thella Babu Rao et. al. (2013) [39]	ZC63/SiC _P	composite principal component (CPC)	surface roughness, MRR, wire wear ratio (WWR), kerf (Kw) and white layer thickness	The particulate size, pulse-on time and wire tension has physical significant on the overall quality of the process. Pulse-off time and volume fraction of SiC _P are not significant.
40	Fard et. al. (2013) [86]	Al–SiC metal matrix composite.	Parametric analysis and experimentation by ANOVA and adaptive neuro-fuzzy inference system (ANFIS), artificial bee colony (ABC)	CV and SR.	Pulse on time, discharge current and wire tension are most significant factors for CV and SR.
41	SK. Garg et. al. (2013) [40]	Al/ZrO ₂ (p)- metal matrix composite	L36-mixed orthogonal array Taguchi method.	1 01	The significant parameters for MRR are pulse width, pulse off time, servo control voltage, pulse on time, wire feed rate and wire tension
42	Probir Saha et. al. (2013) [41]	austenitic	orthogonal and uniform-precision rotatable central composite design ,Neuro-Genetic technique	cutting speed and kerf width	Multi-objective optimization of the process parameters obtained by NN based NSGA-II technique.
43	Shandilya et. al. (2013) [88]	SiCp/6061 Al metal matrix composite	Mathematical model by response surface methodology (RSM) and artificial neural network	Average cutting speed	The prediction accuracy of ANN model was about three times better than RSM
44	Reza Kashiry Fard et. al. (2013) [43]	Al–SiC MMC	L27 Taguchi's orthogonal array, adaptive neuro-fuzzy inference system (ANFIS)	cutting velocity and surface roughness	Pulse on time and discharge current were found to have significant effect on CV and SR.
45	Kumar et. al. (2013) [90]	Al/SiC-MMC.	Mathematical models	Material removal rate and surface finish	Surface roughness and MRR is increases with the increase in peak current, pulse on time, % reinforcement, Peak current.
46	Gupta et. al. [65]	Ti_6Al_4V , HE15, 15CDV ₆ and M-250.	Hybrid modeling and optimization by Artificial Neural Network and Response Surface Methodology.	Surface roughness	To get maximum surface finish hybrid modelling and optimization is carried out.
47	Shandilya et. al. (2012) [68]	SiCp/6061 Al metal matrix composite	Response surface methodology (RSM) and artificial neural network (ANN). Box–	MMR	ANN model is superior for prediction of MMR. This can lead to economical machining.

			Behnken design		
48	Sertan Ozan et. al. (2012) [60]	Al/B ₄ Cp MMC	Taguchi L9 orthogonal array	surface roughness	The particle reinforcement amount (wt.%) is the most dominant factor on the surface roughness followed by pulse on time and wire feed.
49	Vishwakar ma et. al. (2012) [84]	Al-SiC composite	FEA model	MMR	FEA based model developed to analyze the temperature distribution and its effect on MRR.
50	Pragya Shandilya et. al. (2012) [69]	SiCp/6061 Al MMC	Box-Behnken design (BBD)	Cutting width (kerf)	Voltage and wire feed rate are highly significant parameters and pulse-off time is less significant.
51	Pragya Shandilya et. al. (2011) [70]	SiCp/6061 Al MMC	Experimentation	Surface roughness, microstructure and microhardness	The pulse-off time and wire feed rate does not affect the surface roughness significantly. Whereas, Surface roughness is mostly affected by voltage and pulse-on time.
52	Pragya Shandilya et. al. (2011) [71]	SiCp/6061 Al MMC	Box-Behnken design (BBD)	Cutting width (kerf)	Voltage, pulse-off time and wire feed rate have significant effect on kerf where as pulse-on time has insignificant effect.
53	S.N. Joshi et. al. (2010) [7]		Finite element method (FEM).	Shape of crater cavity and the MRR	Crater cavity shapes are predicted.
54	Nilesh Patil et. al.(2010) [31]	Al/Al ₂ O ₃ p	Experimentation	Cutting rate, surface finish, and kerf width.	Volume fraction of ceramic reinforcement, pulse on time, off-time, and servo reference voltage are significant for cutting rate, surface finish, and kerf width.
55	Garg et. al. (2010) [72]	Al ₂ O ₃ reinforced MMC	Review	Theoretical models	Very modest work has been reported on MMCs with powder mixed EDM. Little work on theoretical models. Many MMCs have not been tried as work material on WEDM process.
56	Nilesh Patil et. al. (2010) [30]	Silicon carbide particulate reinforced AMC	Model by using technique such as quasi-Newton and simplex	Gap status, surface integrity and Wire performance,	The accuracy of proposed model is more than 99%. MRR decreases with increase in % ceramic particles.
	Ahmad et. al. (2010) [78]	Aluminium Matrix Composite (AMC) 5 % alumina (Al ₂ O ₃).	Experimentation by regression method	Material removal rate	Very good MRR can be achieved with 5% alumina. Wire breakage and reduced time efficiency of machining observed.
58		5 vol% TiC/Fe in situ MMC	Uniform-precision rotatable CCD of experiments with five levels of each parameter ,normalized radial basis function network (NRBFN)	Cutting speed and kerf width	An increase in the average gap voltage leads to the decrease of the cutting speed and increase in kerf width within considered range.

59	J. W. Liu et. al. (2009) [82]	Al ₂ O ₃ particle- reinforced Al 6061 alloy	L9 orthogonal array design	Material removal rate (MRR)	For the 20% Al ₂ O ₃ reinforced material, the order of importance is current, electrolyte concentration, pulse duration.
					MMR is influenced by the machining parameters in the order of current, pulse duration, electrolyte concentration.
60	Tran Huu Nam et. al. (2008) [8]	Aluminum- based MMC	FE model and Thermo-elastic models	Creater abnormalities	CTEs were investigated.
61	P C Tan et. al. (2008) [19]		Comparison of five EDM models from Snoeys, Van Dijck, Beck, Jilani, and DiBitonto	MRR at the cathode, Temperature distribution and crater geometry	The disk heat source models have a potential to be further development. Shapes of isothermal surfaces for five models were compared.
62	Poros et. al. (2008) [83]	WC-Co B_4C and Ti6Al4V.	Semi-empirical model	Volumetric efficiency	Increase of discharge time increase of volumetric efficiency. The efficiency of cutting is lower.

Available online at www.ijrat.org

3. SUMMARY OF LITERATURE REVIEW

Most of the researchers systematically worked on process modelling, process parameters, materials of electrodes/tool-work-piece, dielectric medium, etc. The process modelling of WEDM is considered as major objective since long back to latest one [20,24,51,76,91,94,95].

The regression models [10,11,78] and mathematical models [30,38] were modeled and considered by some authors. The other models are thermo elastic [8], [7,8,32], thermo-physical thermo-electrical [6], electro-mechanical. The models developed are numerical [5,7,48,49], analytical [18], empirical, semiempirical [24,30,83] for WEDM process. The models considered the area of the contact between plasma channel and electrode as disc heat source model (DHSM) [19], Gaussian heat distribution [5,7], while considering electrode as finite, semi-finite and infinite in radial and axial direction [32]. Authors also considered a variety of materials as composites, ceramics, monolithic MMC with material properties as uniform, non- uniform and/or isotropic, anisotropic [2-5,18,20,24,30,31,32,70]. The results achieved were compared and validated with experimental data and previous research data [19,31,45,46,70,74,75,76]. Different approaches used as FEM, FDM, FVM to solve the models. Software tools used were ABAQUS, ANSYS, MATLAB, etc [4,7,8,32,43].

Researchers investigated the effect of process parameters on Kerf width [26,31,36,39,41,67,69,71, 80], MRR [10,17,21,27,30,38,47,50,58,81, 82,84, 85,

88,89], Dimensional Deviation [16], Cutting Speed [11,43,80], Electrode wear [26], Spark Gap[40], characterization [77,79,] and surface finish / Surface roughness [8,15,17,24,27,29,32,47,50,60,63,65,68,77, 94,95]. Researches attempted to optimize these process parameters to establish database which can be used in industry or future research [14,25,36,41,64, 65,66,67,80,82,87,88,90,91,93,94,96]. Authors also reviewed literature which gives insight of previous researches done [33,36,52,56,59,61,62,72,74].

4. FUTURE SCOPE

A substantial amount of research has been carried out on WEDM. However very few studies are available on modelling of WEDM process and modelling of Metal Matrix Composites. Research potentials are also available in:

- Modelling of Metal Matrix Composite as a • work-piece.
- Process modelling of WEDM.
- Investigation into . interaction between electrode, plasma, and work-piece for WEDM.
- Particle removal mechanism in MMC is major parameter in surface roughness which is still a challenge.
- Optimal combination of process parameters for WEDM of MMC also offers another challenge.

Available online at www.ijrat.org

5. CONCLUSION

The aim of the review is to lay emphasis on key research studies on WEDM for MMCs. Prior research studies focused on process modelling, process parameters, materials of electrodes/tool-work-piece, dielectric medium, optimization of process parameters, etc. The current review study concludes that modelling of WEDM is considered as prime objective

REFERENCES

- Garg, M. P., Jain A. and Bhushan, G.(2012) Modeling and multi objective optimization of process parameters of WEDM using non dominated sorting algorithm. Proceedings of Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture, 226(12):1986-2001
- [2] U. Umer M. Ashfaq, J. A. Qudeiri, H. M. A. Hussein, S. N. Danish, A. R. Al-Ahmari, Modeling machining of particle-reinforced aluminum-based metal matrix composites using cohesive zone elements, Int J Adv Manuf Technol 78 (2015) 1171–1179
- [3] Ravi Sekhar, T.P. Singh Mechanisms in turning of metal matrix composites: a review. J mater res techno l. 4(2) (2015) 197–207
- [4] U. Umer, M. Ashfaq, J. A. Qudeiri H. M. A. Hussein, A. R. AL-Ahmari, Finite element modeling of the orthogonal machining of particle reinforced aluminum based metal matrix composites, MM Science Journal (2014)
- [5] Chinmaya R. Dandekar, Yung C. Shin, Experimental evaluation of laser-assisted machining of silicon carbide particle-reinforced aluminum matrix composites, Int J Adv Manuf Technol 66 (2013) 1603–1610
- [6] E. Weingärtner, F. Kuster, K. Wegener, Modeling and simulation of electrical discharge machining, Procedia CIRP 2 (2012) 74 – 78
- [7] S.N. Joshi, S.S. Pande, Thermo-physical modeling of die-sinking EDM process, Journal of Manufacturing Processes 12 (2010) 45-56
- [8] Chinmaya R. Dandekar, Yung C. Shin, Multi-step 3-D finite element modeling of subsurface damage in machining particulate reinforced metal matrix composites, Composites: Part A 40 (2009) 1231–1239
- [9] Chinmaya R. Dandekar, Yung C. Shin, Journal of Manufacturing Science and Engineering, October (2008), Vol. 130.ASME
- [10] Ravi Kumar, K. & Nishasoms Arab, Desirability-Based Multi-objective Optimization and Analysis of WEDMCharacteristics of Aluminium (6082)/ Tungsten Carbide Composites, J Sci Eng (2018).
- [11] Kumar, H., Manna, A. & Kumar, R. Modeling and desirability approach-based multi-response

optimization of WEDM parameters in machining of aluminum metal matrix composite J Braz. Soc. Mech. Sci. Eng. (2018) 40: 458.

- [12] A Muniappan et al 2018 Modeling and experimental investigation of process parameters in WEDM for surface roughness using regression model IOP Conf. Ser.: Mater. Sci. Eng. 402 012170
- [13] Srivastava, A., Nag, A., Dixit, A., et al. (2018). Surface integrity in wire-EDM tangential turning of in situ hybrid metal matrix composite A359/B4C/Al2O3. Science and Engineering of Composite Materials, 0(0), pp. -. Retrieved 30 Oct. 2018, from doi:10.1515/secm-2017-0391
- [14] Shamim Haidar, Mukandar Sekh, Joyjeet Ghose, Machinability of Aluminium MMC foam using WEDM process, International journal of basic and applied research, March 2018 Volume 8 Number 3
- [15] Harmesh Kumar & Sachin Mohal (2017) Parametric optimization of multiwalled carbon nanotube-assisted electric discharge Al-10% SiC_n metal of machining matrix composite by response surface methodology Manufacturing .Materials and Processes, 32:3, 263-273
- [16] Mohinder Pal Garg, Anand Sharma, Examination of accuracy aspect in machining of ZrSiO4p/6063 aluminium MMC using CNC Wire Electrical Discharge Machining, Composites Communications, Volume 6,2017, Pages 6-10,ISSN 2452-2139.
- [17] P. M. Gopal, K. Soorya Prakash & S. Jayaraj (2018) WEDM of Mg/CRT/BN composites: Effect of materials and machining parameters, Materials and Manufacturing Processes, 33:1, 77- 84
- [18] Tran Huu Nam, Guillermo Requena, Peter Degischer, Thermal expansion behavior of aluminum matrix composites with densely packed SiC particles, Composites: Part A 39 (ta) 856– 865.
- [19] S.H. Yeo, W. Kurnia, P.C. Tan, Critical assessment and numerical comparison of electrothermal models in EDM, Journal of materials processing technology 203 (2008) 241–251
- [20] Nilesh G. Patil, P.K. Brahmankar, D.G. Thakur, On the effects of wire electrode and ceramic volume fraction in wire electrical discharge machining of ceramic particulate reinforced aluminium matrix composites, Procedia CIRP 42 (2016) 286 – 291.
- [21] Das, Shubhajit & Chandrasekaran, M & Samanta, S. (2016). Parametric Analysis and Optimization of WEDM of Al6061/7%SiC/3%B 4 C Hybrid MMCs.
- [22] Chandrakasan, Ahilan & Rajan, H.B.. (2016). Optimization of MRR and Surface Roughness of

Available online at www.ijrat.org

in situ formed AA7075/TiB2 composite - grey based Taguchi method. 14. 1026-1040.

- [23] Babu Rao, Thella. (2016). Optimizing machining parameters of wire-EDM process to cut Al7075/SiCp composites using an integrated statistical approach. Advances in Manufacturing. 4. 10.1007/s40436-016-0148-3.
- [24] Nilesh G. Patil, P.K. Brahmankar. Semi-empirical modeling of surface roughness in wire electrodischarge machining of ceramic particulate reinforced Al matrix composites, Procedia CIRP 42 (2016) 280 – 285
- [25] Anand Sharma et.al., Investigation of wire electrical discharge machining of ZrSiO4p/Al 6063 MMC, Int. J. Machining and Machinability of Materials, Vol. 18, No. 4, 2016
- [26] A. Pramaniket.al.Effect of reinforced particle size on wire EDM of MMCs,Int. J. Machining and Machinability of Materials, Vol. 17, No. 2, 2015
- [27] Motorcu, A., Ekici, E. & Kuş, A. (2015). Investigation of the WEDM of Al/B4C/Gr reinforced hybrid composites using the Taguchi method and response surface methodology. Science and Engineering of Composite Materials, 23(4), pp. 435-445. Retrieved 30 Oct. 2018.
- [28] Ekici, E., Motorcu, A. R., & Kuş, A. (2016). Evaluation of surface roughness and material removal rate in the wire electrical discharge machining of Al/B4C composites via the Taguchi method. Journal of Composite Materials, 50(18), 2575–2586.
- [29] Shandilya, Pragya & , PRAGYA & Jain, P & Jain, Neelesh. (2014). Modeling and analysis of surface roughness in WEDC of SiCP/6061 Al MMC through response surface methodology. International Journal of Engineering Science and Technology. 3. 531-535.
- [30] Nilesh Ganpatrao Patil& P. K. Brahmankar, Determination of material removal rate in wire electro-discharge machining of metal matrix composites using dimensional analysis, Int J Adv Manuf Technol 51 (2010) 599–610
- [31] Nilesh G. Patil& P. K. Brahmankar, Some studies into wire electro-discharge machining of alumina particulate-reinforced aluminum matrix composites, Int J Adv Manuf Technol 48 (2010) 537–555
- [32] Harmesh Kumar, Alakesh Manna, Rajesh Kumar, Modeling of Process Parameters for Surface Roughness and Analysis of Machined Surface in WEDM of Al/SiC-MMC, Trans Indian Inst Met DOI 10.1007/s12666-017-1159-x
- [33] Angelos P. Markopoulos, Ioannis S. Pressas, Ioannis G. Papantoniou, Nikolaos E. Karkalos and J. Paulo Davim, Machining and Machining Modeling of Metal Matrix Composites—A Review, Springer International Publishing Switzerland (2015) J.P. Davim (ed.), Modern

Manufacturing Engineering, Materials Forming, Machining and Tribology,

- [34] Ravi Sekhara, T.P. Singh , Mechanisms in turning of metal matrix composites: a review, j mater res technol 4(2) 2015 197–207
- [35] Yung C. Shin and Chinmaya Dandekar, Mechanics and Modeling of Chip Formation in Machining of MMC, J. P. Davim (ed.), Machining of Metal Matrix Composites, DOI: 10.1007/978-0-85729-938-3_1, Springer-Verlag London Limited (2012)
- [36] Thella Babu Rao and A. Gopala Krishna, Principal Component Analysis of Correlated WEDM Performance Characteristics during Machining ZC63/SiCP MMCs ,J. Manuf. Sci. Prod. 2014; 14(1): 13 – 21
- [37] U. Umer, M. Ashfaq, J. A. Qudeiri, H. M. A. Hussein, S. N. Danish, A. R. Al-Ahmari , Modeling machining of particle-reinforced aluminum-based metal matrix composites using cohesive zone elements, Int J Adv Manuf Technol 78 (2015) 1171–1179
- [38] Garg, S.K., Manna, A. & Jain, A. Arab, An Investigation on Machinability of Al/10 % ZrO2(P)-Metal Matrix Composite by WEDM and Parametric Optimization Using Desirability Function Approach, J Sci Eng (2014) 39: 3251. https://doi.org/10.1007/s13369-013-0941-2
- [39] Babu Rao, T. & Gopala Krishna, A.,Simultaneous optimization of multiple performance characteristics in WEDM for machining ZC63/SiCp MMC, Adv. Manuf. (2013) 1: 265. https://doi.org/10.1007/s40436-013-0029-y
- [40] Garg, S.K., Manna, A. & Jain, A. Arab An Experimental Investigation for Optimization of WEDM Parameters During Machining of Fabricated Al/ZrO2(p)-MMC J Sci Eng (2013) 38: 3471. https://doi.org/10.1007/s13369-013-0657-3
- [41] ProbirSaha et.al., Multi-objective optimization in wire-electro-discharge machining TiC reinforced composite through Neuro-Genetic technique, AppliedSoftComputing13(2013)2065–2074
- [42] Reza Kashiry Fard et.al,Experimental investigation intelligent modeling and multicharacteristics optimization of dry WEDM process of Al–SiC metal matrix composite,Journal ofManufacturing Processes 15 (2013) 483–494
- [43] Chinmaya R. Dandekar, Yung C. Shin, Multiphase Finite Element Modeling of Machining Unidirectional Composites: Prediction of Debonding and Fiber Damage, Journal of Manufacturing Science and Engineering October Vol. 130 (2008) 051016-1
- [44] A. Pramanik, Developments in the nontraditional machining of particle reinforced metal

matrix composites, International Journal of Machine Tools & Manufacture 86 (2014) 44–61

- [45] Bhaskar Chandra Kandpala, Jatinder kumar ,Hari Singh, Machining of aluminium metal matrix composites with Electrical discharge machining -A Review, Materials Today, Proceedings 2 (2015) 1665 – 1671
- [46] Saradindu Das, Suhas S. Joshi , Modeling of spark erosion rate in microwire-EDM , Int J Adv Manuf Technol 48 (2010) 581–596
- [47] K.M. Patel, Pulak M. Pandey, P. Venkateswara Rao, Surface integrity and material removal mechanisms associated with the EDM of Al2O3 ceramic composite, Int. Journal of Refractory Metals & Hard Materials 27 (2009) 892–899
- [48] Anshuman Kumar, Dillip Kumar Bagal, K.P.Maity, Numerical Modeling of Wire Electrical Discharge Machining of Super alloy Inconel 718, Procedia Engineering 97 (2014) 1512-1523
- [49] Kamlesh Joshi, Gaurav Sharma, Ganesh Dongre, Suhas Sitaram Joshi, Numerical Modelling of Wire-EDM for Predicting Erosion Rate of Silicon, J. Inst. Eng. India Ser. C
- [50] K. Salonitis, A. Stournaras, P. Stavropoulos, G. Chryssolouris, Thermal modeling of the material removal rate and surface roughness for diesinking EDM, Int J Adv Manuf Technol 40 (2009) 316–323
- [51] S. Prashantha , R.B. Veeresha , S.M. Shashidhara , U.S. Mallikarjun , A.G. Shivasiddaramaiah, A Study on Machining Characteristics of Al6061-Sic Metal Matrix Composite through Wire – Cut Electro Discharge Machining, Materials Today Proceeding Volume 4, Issue 10, (2017), Pages 10779-10785
- [52] Yash Pachaury, Puneet Tandon, An overview of electric discharge machining of ceramics and ceramic based composites, Journal of Manufacturing Processes 25 (2017) 369–390
- [53] A.Pramanik, A.K.Basak, Degradation of wire electrode during electrical discharge machining of metal matrix composites, Wear346-347(2016)124–131
- [54] Islam Shyha, Mark Rudd, Electro-discharge machining of metal matrix composite materials, Advances in Materials and Processing Technologies (2016)
- [55] S. Gopalkrishnan, Electrical discharge machining characteristics and optimization of newer materials, Electrical discharge machining types, technologies and application M. P. Jahan 357-382
- [56] P. T. Borlepwar, Dr. N. G. Patil, Recent advances in electrical discharge machining process: a review, IVth international conference on production and industrial engineering, CPIE (2016)

- [57] A.Pramanik, Electrical Discharge Machining of MMCs Reinforced with Very Small Particles, Materials and Manufacturing Processes (2015)
- [58] Mehdi Hourmand, Saeed Farahany, Ahmed A. D. Sarhan, Mohd Yusof Noordin, Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach, Int J Adv Manuf Technol 77 (2015) 831–838
- [59] S.K. Lalmuan, Shubhajit Das, M. Chandrasekaran, Santosh K. Tamang, Machining Investigation on Hybrid Metal Matrix Composites-А Review, Materials Today Proceeding Volume 4, Issue 8, (2017), Pages 8167-8175
- [60] A Sertan Ozan et.al., An investigation of WEDM process parameters on the surface roughness of Al/B4Cp metal matrix composites, 2012 J AIP Conference Proceedings P 317-320,1476 1
- [61] Bisaria, H., Shandilya, P, Machining of metal matrix composites by EDM and its variants: A Review, DAAAM international scientific book capter 23 (2015)5 pp. 267-282
- [62] Shalini Mohanty, B.C. Routara, A review on machining of metal matrix composites using nano-particle mixed dielectric in electro-discharge machining, International Journal of Automotive and Mechanical Engineering (IJAME) Volume 13, Issue 2 September (2016) pp. 3518 - 3539
- [63] P.Sivaprakasam, P.Hariharan, S.Gowri, Modeling and analysis of Micro Electro Discharge Milling process of Aluminium Matrix Composites: A Response Surface Approach, Conference Paper -May (2015)
- [64] Gangadharudu Talla, Deepak Kumar Sahoo, S. Gangopadhyay, C.K. Biswas, Modeling and multi-objective optimization of powder mixed electric discharge machining process of aluminum/alumina metal matrix composite, Engineering Science and Technology, an International Journal (2015) 1-5
- [65] Dagadappula Uttam Kumar, Kantha Rao, Dr. S. Rajesh, Modelling Of Process Parameters On Surface Roughness With Wire EDM On Aluminium Metal Matrix Composite, International Journal of Mechanical Engineering and Computer Applications, Vol 3, Issue 3 May (2015)
- [66] Abhijit Saha , Subhas Chandra Mondal, Optimisation of wire electric discharge machining process: a review and reflection, International Journal of Productivity and Quality Management Volume 22, Issue 3 (2017)
- [67] Palani Sivaprakasam, P. Hariharan, S. Gowri, Optimization of Micro-WEDM Process

Available online at www.ijrat.org

- [68] of Aluminum Matrix Composite (A413-B4C): A Response Surface Approach, Materials and Manufacturing Processes, 28 (2013) 1340–1347,
- [69] Pragya Shandilya, P.K. Jain, N.K. Jain, Prediction of surface roughness during wire electrical discharge machining of SiCp/6061 Al metal matrix composite, Int. J. Industrial and Systems Engineering, Vol. 12, No. 3, (2012)
- [70] Pragya Shandilya& P.K. Jain Prediction of surface roughness during wire electrical discharge machining of SiC /6061 Al metal matrix composite, Int. J. Industrial and Systems Engineering, Vol. 12, No. 3, 2012 301
- [71] Shandilya, Pragya & Jain, P & Jain, Neelesh. (2011). Surface Integrity Aspects after Wire Electric Discharge Machining of SiCp/6061 Al Metal Matrix Composites.
- [72] Shandilya, Pragya & Jain, P & Jain, Neelesh. (2011). Selection of optimum parameters in wire electric discharge cutting (WEDC) of SiCp/6061 Al MMC.
- [73] R. K. Garg, K. K. Singh, Anish Sachdeva, Vishal S. Sharma, Kuldeep Ojha, Sharanjit Singh, Review of research work in sinking EDM and WEDM on metal matrix composite materials, Int J Adv Manuf Technol 50 (2010) 611–624
- [74] Harsimran Singh, Harmesh Kumar, Review on wire electrical discharge machining (WEDM) of aluminum matrix composites, International Journal of Mechanical And Production Engineering, ISSN: 2320-2092, Volume- 3, Issue-10, Oct.-(2015)
- [75] Thella Babu Rao, A. Gopala Krishna, Selection of optimal process parameters in WEDM while machining Al7075/SiCp metal matrix composites, Int J Adv Manuf Technol (2014)
- [76] [65] J. W. Liu, T. M. Yue, Z. N. Guo, Y. J. Zhang, Single pulse studies of the electrical discharge machining of metal matrix composite materials Materials Research Innovations, 19:sup5, S5-137-S5-141 (2015)
- [77] Kumari Bimla Mardi, A.R. Dixit, Ashis Mallick, Studies on Non-traditional Machining of Metal Matrix Composites, Materials Today Proceeding Volume 4, Issue 8, (2017), Pages 8226-8239
- [78] Wang Zhenlong, Geng Xuesong, Chi Guanxin, Wang Yukui, Surface Integrity Associated with SiC/Al Particulate Composite by Micro-Wire Electrical Discharge Machining, Materials and Manufacturing Processes, 29 (2014) 532–539
- [79] R.N. Ahmad, M.N. Derman, M. Marzuki, Primary Study on Machiability of Aluminium Matrix Composite using WEDM, International Journal of Engineering & Technology IJET-IJENS Vol:10 No:06 Dec (2010)
- [80] Shyam Lal, Sudhir Kumar, ZA Khan, AN Siddiquee, Multi-response optimization of wire electrical discharge machining process parameters

for Al7075/Al2O3/SiC hybrid composite using Taguchi-based grey relational analysis, J Engineering Manufacture Vol.229(2) (2015)229– 237

- [81] Probir Saha et.al. ,Modeling of wire electrodischarge machining of TiC/Fe in situ metal matrix composite using normalized RBFN with enhanced k-means clustering technique , Int J Adv Manuf Technol (2009) 43:107–116
- [82] Shyam Lal, Sudhir Kumar, ZA Khan, AN Siddiquee, Optimization of wire electrical discharge machining process parameters on material removal rate for Al7075/SiC/Al2O3 hybrid composite, J Engineering Manufacture Vol. 229(5) (2015) 802–812
- [83] J. W. Liu et.al., Wire Electrochemical Discharge Machining of Al2O3 Particle Reinforced Aluminum Alloy 6061,J Materials and Manufacturing Processes volume 24-4,P 446-453,2009
- [84] Dariusz Poro's, Stanisław Zaborski, Semiempirical model of efficiency of wire electrical discharge machining of hard-to-machine materials, Journal of materials processing technology x x x (2008) xxx–xxx
- [85] U. K. Vishwakarma, A. Dvivedi, P. Kumar, FEA Modeling of Material Removal Rate in Electrical Discharge Machining of Al6063/SiC Composites, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol:6, No:3, (2012)
- [86] Sanjeev Kumar, Garg Alakesh, Manna Ajai Jain, Experimental investigation of spark gap and material removal rate of Al/ZrO2(P)MMC machined with wire EDM, Journal of the Brazilian Society of Mechanical Sciences and Engg. Feb Volume 38,Issue 2 (2016) pp 481491
- [87] Reza Kashiry Fard, Reza Azar Afza, Reza Teimouri, Experimental investigation, intelligent modeling and multi-characteristics optimization of dry WEDM process of Al–SiC metal matrix composite, Journal of Manufacturing Processes 15 (2013) 483–494
- [88] S. Suresh Kumar, M. Uthayakumar, S. Thirumalai Kumaran, P. Parameswaran, E. Mohandas, G. Kempulraj, B.S. Ramesh Babu, S.A. Natarajan, Parametric optimization of wire electrical discharge machining on aluminium based composites through grey relational analysis, Journal of Manufacturing Processes 20 (2015) 33–39
- [89] Pragya Shandilya, P.K. Jain, N.K. Jain, RSM and ANN Modeling Approaches For Predicting Average Cutting Speed During WEDM of SiCp/6061 Al MMC, Procedia Engineering 64 (2013) 767 – 774.

- [90] Anand Sharma, Mohinder Pal Garg, Kapil Kumar Goyal Prediction of optimal conditions for WEDM of Al 6063/ ZrSiO4(p) MMC, Procedia Materials Science 6 (2014) 1024 – 1033
- [91] Manish Kumar, Alakesh Manna, S. K. Mangal, Anup Malik, An Experimental Investigation During Wire Electrical Discharge Machining of Al/SiC-MMC, Proceedings of the International Conference on Research and Innovations in Mechanical Engineering ICRIME-(2013) 261-271
- [92] H.R. Gurupavan, T.M. Devegowda, H.V. Ravindra, G. Ugrasen, Estimation of Machining Performances in WEDM of Aluminium based Metal Matrix Composite Material using ANN, Materials Today Proceeding Volume 4, Issue 9, (2017), Pages 10035–10038
- [93] Thella Babu Rao, Optimizing machining parameters of wire-EDM process to cut Al7075/SiCp composites using an integrated statistical approach, Advances in Manufacturing September Volume 4, Issue 3, (2016) pp 202–216
- [94] N. Jamuna, A. Sreenivasulu Reddy, Tool Wear and Process Cost Optimization in WEDM of AMMC Using Grey Relational Analysis, IJATIR : Vol.08,Issue.21, November-(2016), Pages:4000-4004
- [95] Şener Karabulut, Halil Karakoç, Ramazan Çitak, Effect of the B4C reinforcement ratio on surface roughness of A16061 based metal matrix composite in wire-EDM machining, IEEE conference (2017)
- [96] Jay M. Pujara, Kartik D. Kothari, Ashish V. Gohil, Process Parameter Optimization for MRR and Surface Roughness during Machining LM6 Aluminum MMC on WEDM, Advanced Engineering Forum, Vol. 20 (2017) pp. 42-50
- [97] A. Dey, V.R. Reddy Bandi, K.M. Pandey, Wire electrical discharge machining characteristics of AA6061/cenosphere aluminium matrix composites using **RSM**, Materials Today: Proceedings, Volume 5, Issue 1, Part 1,2018,Pages 1278-1285,